Intercellular communication amplifies stressful effects in high-charge, high-energy (HZE) particle-irradiated human cells.
نویسندگان
چکیده
Gap junction intercellular communication/Cell killing/Potentially lethal damage repair/DNA damage/ Linear energy transfer of space radiation. Understanding the mechanisms that underlay the biological effects of particulate radiations is essential for space exploration and for radiotherapy. Here, we investigated the role of gap junction intercellular communication (GJIC) in modulating harmful effects induced in confluent cultures wherein most cells are traversed by one or more radiation tracks. We focused on the effect of radiation quality (linear energy transfer; LET) on junctional propagation of DNA damage and cell death among the irradiated cells. Confluent normal human fibroblasts were exposed to graded doses of 1 GeV protons (LET ~0.2 keV/μm) or 1 GeV/u iron ions (LET ~151 keV/μm) and were assayed for clonogenic survival and for micronucleus formation, a reflection of DNA damage, shortly after irradiation and following longer incubation periods. Iron ions were ~2.7 fold more effective than protons at killing 90% of the cells in the exposed cultures when assayed within 5–10 minutes after irradiation. When cells were held in the confluent state for several hours after irradiation, substantial potentially lethal damage repair (PLDR), coupled with a reduction in micronucleus formation, occurred in cells exposed to protons, but not in those exposed to iron ions. In fact, such confluent holding after exposure to a similarly toxic dose of iron ions enhanced the induced toxic effect. However, following iron ion irradiation, inhibition of GJIC by 18-α-glycyrrhetinic acid eliminated the enhanced toxicity and reduced micronucleus formation to levels below those detected in cells assayed shortly after irradiation. The data show that low-LET radiation induces strong PLDR within hours, but that high-LET radiation with similar immediate toxicity does not induce PLDR and its toxicity increases with time following irradiation. The results also show that GJIC among irradiated cells amplifies stressful effects following exposure to high-, but not low-LET radiation, and that GJIC has only minimal effect on cellular recovery following low-LET irradiation.
منابع مشابه
Nontargeted stressful effects in normal human fibroblast cultures exposed to low fluences of high charge, high energy (HZE) particles: kinetics of biologic responses and significance of secondary radiations.
The induction of nontargeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ∼151 keV/μm] or 600 MeV/u silic...
متن کاملThe biological effects induced by high-charged and energy particles and its application in cancer therapy
The radiobiological effects of high atomic number and energy (HZE particles) ion beams are of interest for radioprotection in space and tumor radiotherapy. Space radiation mainly consists of heavy charged particles from protons to iron ions, which is distinct from common terrestrial forms of radiation. HZE particles pose a significant cancer risk to astronauts on prolonged space missions. With ...
متن کاملInduction of chromosomal aberrations at fluences of less than one HZE particle per cell nucleus.
The assumption of a linear dose response used to describe the biological effects of high-LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high-energy charged (HZE) nuclei. Human fibroblast and lymphocyte cells were irradiated with s...
متن کاملRelative Biological Effectiveness of HZE Particles for Chromosomal Exchanges and Other Surrogate Cancer Risk Endpoints.
The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studi...
متن کاملLow-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions
During interplanetary missions, astronauts are exposed to mixed types of ionizing radiation. The low 'flux' of the high atomic number and high energy (HZE) radiations relative to the higher 'flux' of low linear energy transfer (LET) protons makes it highly probable that for any given cell in the body, proton events will precede any HZE event. Whereas progress has been made in our understanding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of radiation research
دوره 52 4 شماره
صفحات -
تاریخ انتشار 2011